

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

New Synthetic Approach for the Construction of Multi-Substituted 2-Acyl Furans via IBX-Mediated Cascade Oxidation/Cyclization of $\it cis$ -2-En-4-yn-1-ols

Xiangwei Du, Haoyi Chen and Yuanhong Liu*

State Key Laboratory of Organometallic Chemistry

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,

354 Fenglin Lu, Shanghai 200032, People's Republic of China

Contents:

Experimental section

Synthesis and characterization of compounds 1a-r.

Synthesis and characterization of compounds 3a-r.

X-ray single-crystal structure of **3c**.

¹H and ¹³C NMR spectra of all new compounds and 2D NMR (HMQC, HMBC, COSY) spectra of compound **3k**.

Experimental section

All reactions were carried out under nitrogen. DMSO was distilled from CaH₂. Unless noted, all commercial reagents were used without further purification. *cis*-Enynols **1a-q** were synthesized through multistep transformations by the modified procedures according to the published reports^[1]. (*Z*)-Enynol **1r** was prepared by the published procedure. ^[2] IBX was prepared by the published reports. ^[3] IBA and DMP were purchased from Aldrich chemical company.

¹H and ¹³C NMR spectra were recorded at 300 and 75.4 MHz, respectively, and in CDCl₃ (containing 0.03% TMS) solutions. ¹H NMR spectra was recorded with tetramethylsilane (d= 0.00 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (d = 77.00 ppm) as internal reference. Melting points were uncorrected. NMR yields were determined using dibromomethane as an internal standard. High-resolution mass spectra was obtained by using Waters Micromass GCT mass spectrometer. Single crystal X-ray diffraction data was collected in Bruker SMART APEX diffractiometers with molybdenum cathodes. Elemental analyses were performed on an Italian Carlo-Erba 1106 analyzer.

A typical procedure for the synthesis of (Z)-enynols 1a-1f and 6. [1a,b]

$$R^1$$
 ii) DIBAL-H HO R^2 HO

Synthesis of **1a.** To a solution of 5-phenyl-pent-2-en-4-ynoic acid ethyl ester (8.02 g, 40.0 mmol) in dry dichloromethane (200 mL) at -78 °C (internal temperature) was added dropwise of DIBAL (42 mL, 42 mmol, 1.0 M solution in toluene). The solution was stirred at -78 °C for 1.5 h, then quenched with 25 mL of 1 M HCl. The solution was diluted with 40 mL of ether and allowed to warm up to room temperature. The aqueous layer was extracted three times with ether. The combined organic layers were

washed successively with 1M HCl, water, and saturated sodium chloride solution, and then dried over sodium sulfate. Purification by chromatography on silica gel (eluent: petroleum ether: ethyl acetate = 10:1) afforded the crude aldehyde, which was used directly for the next step without further purification. To a solution containing above aldehyde in THF at 0 °C was added 2.0 equiv phenylmagnesium bromide (prepared from 2 equiv of phenylbromide and magnesium turning). The mixture was stirred at room temperature until the reaction was complete as monitored by TLC. The reaction was quenched by saturated NH₄Cl solution and extracted with ether. The aqueous layer was extracted three times with ether. The combined organic layers were dried over Na₂SO₄. Purification by column chromatography on silica gel (eluent: petroleum ether : ethyl acetate = 7:1) afforded **1a** in 54% yield (5.03 g) as a yellow solid. M.p. 43-45 °C. ¹H NMR (CDCl₃, Me₄Si) d 3.00 (s, 1H), 5.74 (d, J= 10.5 Hz, 1H), 5.85 (d, J= 8.4 Hz, 1H), 6.06 (dd, J= 10.5 Hz, 8.4 Hz, 1H), 7.19-7.30 (m, 6H), 7.41-7.45 (m, 4H); 13 C NMR (CDCl₃, Me₄Si) d 71.89, 85.36, 94.97, 109.59, 122.83, 125.74, 127.54, 128.28, 128.37, 128.43, 131.39, 142.31, 144.11; IR (neat) 3389, 3060, 2187, 1489, 1027, 754 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₄O 234.1045, found 234.1043.

(*Z*)-1-(4-bromophenyl)-5-phenyl-pent-2-en-4-yn-1-ol (1b). Isolated yield: 34%. White solid. M.p. 89-90 °C. ¹H NMR (CDCl₃, Me₄Si) d 2.49 (s, 1H), 5.82 (d, *J*= 10.8 Hz, 1H), 5.85 (d, *J*= 7.5 Hz, 1H), 6.05 (dd, *J*= 10.7 Hz, 8.6 Hz, 1H), 7.32-7.34 (m, 5H), 7.43-7.48 (m, 4H); ¹³C NMR (CDCl₃, Me₄Si) d 71.41, 85.04, 95.42, 110.35, 121.51, 122.68, 127.51, 128.41, 128.62, 131.47, 131.58, 141.24, 143.44; IR (neat) 3345, 3062, 2888, 1488, 1032, 825, 690 cm⁻¹; Anal. Calcd for C₁₇H₁₃OBr: C, 65.19, H, 4.18, Br, 25.51; Found C, 65.26, H, 4.27, Br, 25.85.

(Z)-1-(4-Methoxyphenyl)-5-phenyl-pent-2-en-4-yn-1-ol (1c). Isolated yield: 42%.

White solid. M.p. 69-70 °C. ¹H NMR (CDCl₃, Me₄Si) d 2.17 (s, 1H), 3.80 (s, 3H), 5.80 (d, J= 11.4 Hz, 1H), 5.86 (dd, J= 8.7, 3.0 Hz, 1H), 6.15 (dd, J= 10.8, 8.4 Hz, 1H), 6.90 (d, J= 8.7 Hz, 2H), 7.33-7.48 (m, 7H); ¹³C NMR (CDCl₃, Me₄Si) d 55.13, 71.60, 85.35, 94.93, 109.26, 113.86, 122.89, 127.05, 128.30, 128.38, 131.40, 134.65, 144.39, 158.98; IR (neat) 3383, 2189, 1611, 1513, 1243, 1027, 836 cm⁻¹; Anal. Calcd for C₁₈H₁₆O₂: C, 81.79, H, 12.11; Found C, 81.56, H, 6.03.

(*Z*)-1-(4-Chlorophenyl)-5-(4-methoxy-phenyl)-pent-2-en-4-yn-1-ol (1d). Isolated yield: 65%. Yellow solid. M.p. 68 °C. ¹H NMR (CDCl₃, Me₄Si) d 2.50 (s, 1H), 3.81 (s, 3H), 5.81 (d, *J*= 10.5 Hz, 1H), 5.85 (dd, *J*= 8.9 Hz, 2.1 Hz, 1H), 6.02 (dd, *J*= 10.8 Hz, 8.4 Hz, 1H), 6.86 (d, *J*= 9.0 Hz, 2H), 7.29-7.41 (m, 6H); ¹³C NMR (CDCl₃, Me₄Si) d 55.27, 71.37, 83.91, 95.52, 110.60, 114.06, 114.81, 127.18, 128.62, 132.98, 133.27, 140.90, 142.74, 159.82; IR (neat) 3190, 2189, 1598, 1508, 1293, 1033, 831 cm⁻¹; Anal. Calcd for C₁₈H₁₅O₂Cl: C, 72.36, H, 5.06, Cl, 11.87; Found C, 72.31, H, 5.19, Cl, 11.76.

(*Z*)-1,5-Bis(4-chlorophenyl)-pent-2-en-4-yn-1-ol (1e). Isolated yield: 66%. Yellow solid. M.p. 58 °C. 1 H NMR (CDCl₃, Me₄Si) d 2.45 (d, J= 3.0 Hz, 1H), 5.81 (d, J= 10.2 Hz, 1H), 5.83 (dd, J= 7.7 Hz, 2.4 Hz, 1H), 6.08 (dd, J= 11.0 Hz, 8.6 Hz, 1H), 7.28-7.40 (m, 8H); 13 C NMR (CDCl₃, Me₄Si) d 71.39, 85.94, 94.20, 110.10, 121.16, 127.15, 128.69, 128.77, 132.67, 133.44, 134.67, 140.59, 143.89 ; IR (neat) 3193, 2195, 1587, 1487, 1090, 825 cm⁻¹; Anal. Calcd for C₁₇H₁₂OCl₂: C, 67.35, H, 3.99, Cl, 23.39; Found C, 67.21, H, 4.35, Cl, 23.00.

(**Z**)-**7-Phenyl-hept-4-en-6-yn-3-ol** (**1f**). This compound was prepared by Sonogashira coupling of corresponding 1*Z*-1-iodo-pent-1-en-3-ol with terminal alkyne. ¹H NMR (CDCl₃, Me₄Si) d 0.98 (t, J= 7.5 Hz, 3H), 1.55-1.76 (m, 2H), 2.25 (s, 1H), 4.69 (q, J= 7.5 Hz, 1H), 5.77 (d, J= 10.5 Hz, 1H), 5.94 (dd, J= 10.8 Hz, 8.1 Hz, 1H), 7.29-7.33 (m, 3H), 7.40-7.44 (m, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 9.51, 29.58, 71.48, 85.30, 94.59, 109.97, 122.97, 128.29, 128.33, 131.34, 145.06; IR (neat) 3446, 3061, 2969, 2195, 1649, 1490, 694 cm⁻¹; HRMS (EI) calcd for C₁₃H₁₄O 186.1045, found 186.1050.

(*Z*)-1,1,5-Triphenyl-pent-2-en-4-yn-1-ol (6). Isolated yield: 62%. Brown solid, M.p. 64 °C. ¹H NMR (CDCl₃, Me₄Si) d 4.09 (s, 1H), 6.00 (d, *J*= 11.4 Hz, 1H), 6.63 (d, *J*= 11.7 Hz, 1H), 7.24-7.48 (m, 15H); ¹³C NMR (CDCl₃, Me₄Si) d 80.03, 85.23, 98.34, 108.76, 122.34, 126.69, 127.25, 128.18, 128.24, 128.66, 131.38, 146.11, 148.18; IR (neat) 3575, 3051, 2193, 1596, 1489, 999, 759 cm⁻¹; HRMS (EI) calcd for C₂₃H₁₈O: 310.1358, found 310.1353.

A typical procedure for the synthesis of (Z)-enynols 1g-1k. [1b]

Synthesis of 1h. To a solution of (Z)-2-ethyl-5-phenyl-pent-2-en-4-yn-1-ol (86.5 mg, 0.45 mmol) in dichloromethane was added MnO₂ (885 mg, 9 mmol, or 40~50 equiv MnO₂). After stirring at room temperature for 10 h, the solution was filtered and

concentrated. Then 2 mL THF was added at 0 °C followed by adding 2.0 equive thylmagnesium bromide. The mixture was stirred at room temperature until the reaction was complete as monitored by TLC. Purification by column chromatography on silica gel afforded **1h** as a yellow oil in 61% overall yield (60.3 mg). **(Z)-4-Ethyl-7-phenyl-hept-4-en-6-yn-3-ol (1h)**. ¹H NMR (CDCl₃, Me₄Si) d 0.98 (t, J = 7.4 Hz, 3H), 1.10 (t, J = 7.4 Hz, 3H), 1.61-1.77 (m, 2H), 2.09 (bs, 1H), 2.11-2.32 (m, 2H), 4.84 (t, J = 7.1 Hz, 1H), 5.58 (s, 1H), 7.29-7.42 (m, 5H); ¹³C NMR (CDCl₃, Me₄Si) d 10.26, 12.33, 23.14, 28.43, 74.34, 86.23, 94.11, 104.33, 123.53, 127.94, 128.27, 131.14, 158.64; IR (neat) 3418, 3092, 2965, 2195, 1489, 1490, 1012, 755 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₈O 214.1358, found 214.1351.

(**Z**)-2-Ethyl-1-phenyl-non-2-en-4-yn-1-ol (1g). Isolated yield: 60%. ¹H NMR (CDCl₃, Me₄Si) d 0.89-0.98 (m, 6H), 1.39-1.59 (m, 4H), 1.85-1.94 (m, 1H), 2.14-2.23 (m, 1H), 2.34-2.40 (m, 3H), 5.43-5.46 (m, 1H), 6.06 (d, *J*= 4.2 Hz, 1H), 7.22-7.36 (m, 3H), 7.44-7.47 (m, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 12.15, 13.56, 19.25, 21.98, 22.56, 30.84, 73.64, 95.08, 105.57, 125.41, 127.04, 128.12, 142.20, 155.83; IR (neat) 3476, 3061, 2961, 2191, 1602, 1450, 1025, 700 cm⁻¹; HRMS (EI) calcd for C₁₇H₂₂O 242.1671, found 242.1667.

(**Z**)-**2-Ethyl-1,5-diphenyl-pent-2-en-4-yn-1-ol** (**1i**). Isolated yield: 68%. ¹H NMR (CDCl₃, Me₄Si) d 0.96 (t, *J*= 7.5 Hz, 3H), 1.92-2.01 (m, 1H), 2.24-2.32 (m, 1H), 2.50 (s, 1H), 5.66 (s, 1H), 6.21 (s, 1H), 7.21-7.34 (m, 6H), 7.40-7.51 (m, 4H); ¹³C NMR (CDCl₃, Me₄Si) d 12.05, 22.44, 73.58, 86.55, 93.82, 105.02, 123.35, 125.35, 127.13, 128.05, 128.19, 128.28, 131.28, 141.97, 157.88; IR (neat) 3444, 3060, 2966, 1595,

1490, 1037, 755 cm⁻¹; HRMS (EI) calcd for C₁₉H₁₈O: 262.1358, found 262.1364.

(*Z*)-1-(4-Chlorophenyl)-2-ethyl-5-phenyl-pent-2-en-4-yn-1-ol (1j). Isolated yield: 72%. 1 H NMR (CDCl₃, Me₄Si) d 0.98 (t, J= 7.2 Hz, 3H), 1.90-1.99 (m, 1H), 2.21-2.23 (m, 1H), 2.32 (d, J= 3.9 Hz, 1H), 5.68 (t, J= 1.5 Hz, 1H), 6.18 (d, J= 3.9 Hz, 1H), 7.28-7.36 (m, 5H), 7.42-7.45 (m, 4H); 13 C NMR (CDCl₃, Me₄Si) d 12.11, 22.41, 73.04, 86.24, 94.11, 105.50, 123.18, 126.81, 128.24, 128.38, 131.31, 132.88, 140.38, 157.34; IR (neat) 3449, 3080, 2967, 2195, 1489, 1091, 755 cm $^{-1}$; HRMS (EI) calcd for C₁₉H₁₇OCl: 296.0968, found 296.0970.

(*Z*)-2-Ethyl-1-(4-methoxyphenyl)-5-phenyl-pent-2-en-4-yn-1-ol (1k). Isolated yield: 73%. ¹H NMR (CDCl₃, Me₄Si) d 0.99 (t, *J*= 7.5 Hz, 3H), 1.96-2.05 (m, 1H), 2.25-2.33 (m, 1H), 2.30 (d, *J*= 3.9 Hz, 1H), 3.79 (s, 3H), 5.65 (t, *J*= 1.5 Hz, 1H), 6.14 (d, *J*= 3.9 Hz, 1H), 6.86-6.89 (m, 2H), 7.29-7.33 (m, 3H), 7.39-7.45 (m, 4H); ¹³C NMR (CDCl₃, Me₄Si) d 12.17, 22.62, 55.21, 73.45, 86.57, 93.91, 104.73, 113.62, 123.43, 126.63, 128.07, 128.33, 131.30, 134.20, 158.20, 158.76; IR (neat) 3467, 3031, 2965, 2187, 1610, 1509, 1034, 756 cm⁻¹; HRMS (EI) calcd for C₂₀H₂₀O₂: 292.1463, found 292.1473.

A typical procedure for the synthesis of enynols 11-1q. [1c-e]

Ph
$$\stackrel{\text{OH}}{=}$$
 $\stackrel{\text{i) 1.6 eq Red-Al}}{=}$ $\stackrel{\text{Ph}}{=}$ $\stackrel{\text{Ph}}{=}$

1) Synthesis of (Z)-3-iodo-1,3-diphenylprop-2-en-1-ol

Under a nitrogen atmosphere, to a solution of 1,3-diphenylprop-2-yn-1-ol (3.12 g, 15 mmol) in dry THF (40 ml) was add Red-Al (7.2 ml, 24 mmol, 65% w/w in toluene) at 0 °C, then the mixture was warmed to room temperature and stirred for 3 h. A solution of ICl in THF (30 ml, 30 mmol, 1.0 M in THF) was added dropwise at -78 °C. Then the mixture was warmed up to room temperature and stirred for 1 h and then 50 °C for additional 1h. The mixture was treated with an aqueous solution of potassium sodium tartrate (10 g in 100 ml H_2O), and extracted with ethyl acetate (3 x 40 ml). The extract was washed with saturated $Na_2S_2O_3$, brine, dried over anhydrous MgSO₄ and evaporated. Chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) afforded (**Z**)-3-iodo-1,3-diphenylprop-2-en-1-ol in 67% yield (3.38 g). ¹H NMR (CDCl₃, Me₄Si) d 2.36 (d, J= 2.1 Hz, 1H), 5.60 (dd, J= 7.7, 3.2 Hz, 1H), 6.19 (d, J= 8.1 Hz, 1H), 7.24-7.53 (m, 10H); ¹³C NMR (CDCl₃, Me₄Si) d 78.78, 105.54, 126.08, 127.74, 128.06, 128.48, 128.52, 128.56, 139.43, 141.57, 141.98; HRMS (EI) calcd for $C_{15}H_{13}OI$: 336.0011, found 336.0025.

2) Synthesis of compound (Z)-1,3,5-triphenylpent-2-en-4-yn-1-ol

To a solution of (*Z*)-3-iodo-1,3-diphenylprop-2-en-1-ol (168 mg, 0.5 mmol) in Et₃N (5 ml) was added ethynylbenzene (60.3 uL, 0.55 mmol), $PdCl_2(PPh_3)_2$ (7.0 mg, 0.01 mmol) and CuI (4.8 mg, 0.025 mmol) at room temperature. Then the mixture was warmed up to 50 °C and stirred for 1 h. The mixture was filtrated, and the filtrate was evaporated to remove Et₃N under reduce pressure. The residue was extracted with ethyl acetate (3 x 40 ml), washed with brine, dried over anhydrous MgSO₄ and

evaporated. Chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) afforded (*Z*)-1,3,5-triphenylpent-2-en-4-yn-1-ol in 97% yield (150 mg) as a liquid. (*Z*)-1,3,5-Triphenyl-pent-2-en-4-yn-1-ol (1l). ¹H NMR (CDCl₃, Me₄Si) d 2.24 (d, *J*= 3.6 Hz, 1H), 6.10 (dd, *J*= 8.7, 3.0 Hz, 1H), 6.59 (d, *J*= 8.7 Hz, 1H), 7.27-7.41 (m, 9H), 7.54-7.58 (m, 4H), 7.68-7.71 (m, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 72.92, 85.89, 96.44, 122.72, 123.93, 125.85, 126.24, 127.59, 128.18, 128.33, 128.37, 128.51, 128.58, 131.53, 136.91, 138.24, 142.49. The spectroscopic data is in agreement with that previously reported. ^[1f]

3-Iodo-1-phenyl-hept-2-en-1-ol. Isolated yield: 77%. The structure was further comfirmed by HMBC and NOESY spectra. 1 H NMR (CDCl₃, Me₄Si) d 0.89 (t, J= 7.1 Hz, 3H), 1.22-1.34 (m, 2H), 1.45-1.55 (m, 2H), 2.48 (t, J= 7.5 Hz, 2H), 2.57 (bs, 1H), 5.41 (d, J= 7.8 Hz, 1H), 5.76 (d, J= 7.2 Hz, 1H), 7.22-7.43 (m, 5H); 13 C NMR (CDCl₃, Me₄Si) d 13.81, 21.32, 31.21, 45.03, 78.24, 110.86, 125.88, 127.64, 128.45, 136.35, 142.03; HRMS (EI) calcd for C₁₃H₁₇OI: 316.0324, found 316.0327.

(**Z**)-1-(4-chlorophenyl)-3-iodo-3-phenylprop-2-en-1-ol. Isolated yield: 73%. 1 H NMR (CDCl₃, Me₄Si) d 2.69 (d, J= 3.3 Hz, 1H), 5.55 (dd, J= 8.0, 3.5 Hz, 1H), 6.11 (d, J= 8.1 Hz, 1H), 7.23-7.33 (m, 5H), 7.41-7.44 (m, 4H); 13 C NMR (CDCl₃, Me₄Si) d 78.35, 106.28, 127.51, 128.27, 128.56, 128.77, 128.91, 133.64, 139.05, 140.04, 141.97; IR (neat) 3381, 3038, 2896, 1595, 1489, 1013, 758 cm⁻¹; HRMS (EI) calcd for $C_{15}H_{12}$ OCII: 369.9621, found 369.9626.

(*Z*)-3-Butyl-1,5-diphenyl-pent-2-en-4-yn-1-ol (1m). Isolated yield: 80%. Yellow solid. M.p. 49-50 °C. ¹H NMR (CDCl₃, Me₄Si) d 0.91 (t, J= 7.2 Hz, 3H), 1.30-1.38 (m, 2H), 1.53-1.63 (m, 2H), 2.23 (t, J= 7.7 Hz, 2H), 2.35 (bs, 1H), 5.86 (d, J= 8.7 Hz, 1H), 5.90 (d, J= 8.7 Hz, 1H), 7.21-7.38 (m, 6H), 7.46-7.48 (m, 4H); ¹³C NMR (CDCl₃, Me₄Si) d 13.88, 22.03, 30.31, 36.67, 72.57, 87.18, 94.72, 123.07, 124.95, 125.70, 127.40, 128.31, 128.43, 131.50, 138.31, 143.01; IR (neat) 3286, 3032, 2952, 1489, 1018, 760 cm⁻¹; HRMS (EI) calcd for C₂₁H₂₂O: 290.1671, found 290.1670.

(*E*)-1,5-Diphenyl-3-(trimethylsilyl)pent-2-en-4-yn-1-ol (1n). Isolated yield: 51%. 1 H NMR (CDCl₃, Me₄Si) d 0.20 (s, 9H), 2.46 (d, J= 1.8 Hz, 1H), 5.92 (dd, J= 8.0, 2.0 Hz, 1H), 6.27 (d, J= 7.8 Hz, 1H), 7.28-7.37 (m, 6H), 7.42-7.49 (m, 4H); 13 C NMR (CDCl₃, Me₄Si) d -2.11, 73.46, 87.75, 99.09, 123.74, 125.77, 125.87, 127.49, 128.06, 128.29, 128.48, 131.38, 142.54, 150.04; IR (neat) 3394, 3062, 2957, 1489, 1249, 1037, 842, 698 cm⁻¹; HRMS (EI) calcd for $C_{20}H_{22}OSi$: 306.1440, found 306.1453.

(*E*)-1,3-Diphenyl-pent-2-en-4-yn-1-ol (1o). Isolated yield: 54% (two steps of Sonagashira coupling/desilylation). 1 H NMR (CDCl₃, Me₄Si) d 2.71 (d, J= 3.0 Hz, 1H), 3.39 (s, 1H), 5.96 (dd, J= 8.7, 2.7 Hz, 1H), 6.55 (d, J= 9.0 Hz, 1H), 7.22-7.35 (m, 6H), 7.45-7.48 (d, J= 7.5 Hz, 2H), 7.56-7.59 (m, 2H); 13 C NMR (CDCl₃, Me₄Si) d 72.63, 80.08, 84.56, 123.06, 125.81, 126.18, 127.68, 128.30, 128.35, 128.53, 136.41, 139.81, 142.31; IR (neat) 3289, 3030, 2098, 1493, 1020, 697 cm⁻¹; HRMS (EI) calcd for $C_{17}H_{14}O$: 234.1045, found 234.1050.

(*Z*)- 3-Butyl-1-phenyl-pent-2-en-4-yn-1-ol (1p). Isolated yield: 50% (two steps of Sonagashira coupling/desilylation). 1 H NMR (CDCl₃, Me₄Si) d 0.86 (t, J= 7.2 Hz, 3H), 1.23-1.35 (m, 2H), 1.45-1.55 (m, 2H), 2.13 (t, J= 7.5 Hz, 2H), 2.54 (d, J= 3.3 Hz, 1H), 3.19 (s, 1H), 5.74 (dd, J= 9.0, 2.7Hz, 1H), 5.88 (d, J= 8.7 Hz, 1H), 7.19-7.42 (m, 5H); 13 C NMR (CDCl₃, Me₄Si) d 13.79, 21.94, 30.01, 36.44, 72.19, 81.48, 82.56, 123.82, 125.63, 127.40, 128.37, 139.91, 142.80; IR (neat) 3293, 3030, 2930, 2093, 1602, 1451, 1014, 759 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₈O: 214.1358, found 214.1361.

(*E*)-1-(4-Chlorophenyl)-3-phenyl-pent-2-en-4-yn-1-ol (1q). Isolated yield: 66% (two steps of Sonagashira coupling/desilylation). Brown solid, M.p. 64-66 °C. 1 H NMR (CDCl₃, Me₄Si) d 2.68 (d, J= 7.2 Hz, 1H), 3.43 (d, J= 0.6 Hz, 1H), 5.94 (d, J= 8.7 Hz, 1H), 6.50 (d, J= 9.0 Hz, 1H), 7.28-7.42 (m, 7H), 7.56-7.60 (m, 2H); 13 C NMR (CDCl₃, Me₄Si) d 72.03, 79.91, 84.84, 123.49, 126.17, 127.18, 128.43, 128.51, 128.66, 133.37, 136.18, 139.19, 140.68; IR (neat) 3279, 1594, 1494, 1088, 1012, 825, 649 cm⁻¹; HRMS (EI) calcd for $C_{17}H_{13}OCl$: 268.0655, found 268.0666.

A typical procedure for IBX-mediated oxidation of (Z)-1,5-Diphenyl-pent-2-en-4-yn-1-ol (1a): To a solution of (Z)-enynol 1a (150 mg, 0.64 mmol) in 1.83 mL DMSO was added 2.0 equiv IBX (358 mg, 1.28 mmol). The resulting solution was stirred at room temperature for 45 minutes. After the reaction, the precipitate of IBA was removed by filtration and the filtrate was extracted with ether and washed with water. The aqueous phase was extracted with ether for three times. The combined organic layers were dried over anhydrous Na₂SO₄, and

concentrated in vacuo. The crude product was purified by chromatography on silica gel to afford the (**Z**)-1,5-diphenyl-pent-2-en-4-yn-1-one 2a in 81% yield.

A typical procedure for **IBX-mediated** cyclization of (Z)-3-butyl-1,5-diphenyl-pent-2-en-4-yn-1-ol (1m): To a solution of (Z)-enynol 1m (102) mg, 0.35 mmol) in 1.0 mL DMSO was added 3.0 equiv IBX (296 mg, 1.05 mmol). The resulting solution was stirred at 90 °C until the reaction was complete as monitored by thin-layer chromatography. After the reaction, the precipitate of IBA was removed by filtration and the filtrate was extracted with ether and washed with water. The aqueous phase was extracted with ether for three times. The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by silica afford chromatography on gel the 2-acyl furan derivative (3-butyl-5-phenyl-furan-2-yl)-phenyl-methanone (3m) in 70% yield.

(*Z*)-1,5-Diphenyl-pent-2-en-4-yn-1-one (2a). Column chromatography on silica gel (petroleum ether / ethyl acetate =18:1) afforded the title product in 81% isolated yield as a pale yellow solid. M.p. 57-60 °C. ¹H NMR (CDCl₃, Me₄Si) d 6.44 (d, *J*= 12.0 Hz, 1H), 7.07 (d, *J*= 12.0 Hz, 1H), 7.29-7.56 (m, 8H), 7.96-7.99 (m, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 87.58, 100.73, 121.38, 122.44, 128.22, 128.52, 128.55, 129.12, 132.12, 132.64, 132.91, 137.66, 189.81; IR (neat) 3062, 2186, 1658, 1229, 968, 753 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₂O: 232.0888, found 232.0898.

Phenyl(5-phenyl-furan-2-yl)methanone (**3a**). Column chromatography on silica gel (petroleum ether / ethyl acetate =18:1) afforded the title product in 79% isolated yield as a yellow solid. 1 H NMR (CDCl₃, Me₄Si) d 6.83 (d, J= 4.2 Hz, 1H), 7.31 (d, J= 3.6 Hz, 1H), 7.37-7.60 (m, 6H), 7.80-7.84 (m, 2H), 7.99-8.02 (m, 2H); 13 C NMR (CDCl₃,

Me₄Si) d 107.36, 122.82, 124.97, 128.29, 128.78, 129.12, 129.18, 132.28, 137.44, 151.25, 158.26, 181.97. The spectroscopic data is in agreement with that previously reported.^[5]

(5-(4-Bromophenyl)furan-2-yl)(phenyl)methanone (3b). Column chromatography on silica gel (petroleum ether / ethyl acetate =7:1) afforded the title product in 64% isolated yield as a yellow solid. M.p. 119-121 °C. ¹H NMR (CDCl₃, Me₄Si) d 6.82 (d, *J*= 3.6 Hz, 1H), 7.28 (d, *J*= 3.6 Hz, 1H), 7.48-7.68 (m, 7H), 7.97 (d, *J*= 6.9 Hz, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 107.80, 122.81, 123.36, 126.43, 128.09, 128.39, 129.12, 132.04, 132.44, 137.34, 151.39, 157.12, 182.05; IR (neat) 1634, 1468, 1321, 1072, 985, 697 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₁O₂Br: 325.9942, found 325.9928.

(5-(4-Methoxyphenyl)-furan-2-yl)(phenyl)methanone (3c). Column chromatography on silica gel (petroleum ether / ethyl acetate =6:1) afforded the title product in 72% isolated yield as a yellow solid. M.p. 85-86 °C. ¹H NMR (CDCl₃, Me₄Si) d 3.83 (s, 3H), 6.69 (d, *J*= 3.9 Hz, 1H), 6.95 (d, *J*= 8.7 Hz, 2H), 7.27 (d, *J*= 3.9 Hz, 1H), 7.47-7.61 (m, 3H), 7.75 (d, *J*= 8.7 Hz, 2H), 7.97 (d, *J*= 7.8 Hz, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 55.24, 105.99, 114.20, 121.94, 123.49, 126.62, 128.27, 129.04, 132.15, 137.61, 150.66, 158.68, 160.39, 181.88; IR (neat) 3068, 2966, 1599, 1477, 1255, 837 cm⁻¹; HRMS (EI) calcd for C₁₈H₁₄O₃: 278.0943, found 278.0940.

[5-(4-Chloro-phenyl)-furan-2-yl]-(4-methoxy-phenyl)-methanone (3d). Column

chromatography on silica gel (petroleum ether / ethyl acetate =7:1) afforded the title product in 67% isolated yield as a pale yellow solid. M.p. 123 °C. ¹H NMR (CDCl₃, Me₄Si) d 3.89 (s, 3H), 6.80 (d, J= 3.6 Hz, 1H), 7.00 (d, J= 9.0 Hz, 2H), 7.28 (d, J= 3.6 Hz, 1H), 7.39 (d, J= 8.7 Hz, 2H), 7.72 (d, J= 8.7 Hz, 2H), 8.04 (d, J= 8.7 Hz, 2H); 13 C NMR (CDCl₃, Me₄Si) d 55.41, 107.61, 113.66, 121.86, 126.10, 127.83, 129.07, 129.87, 131.54, 134.85, 151.75, 156.53, 163.15, 180.63; IR (neat) 1633, 1473, 1309, 1039, 987, 802 cm⁻¹; HRMS (EI) calcd for C₁₈H₁₃O₃Cl: 312.0553, found 312.0560.

(4-Chloro-phenyl)-[5-(4-chloro-phenyl)-furan-2-yl]-methanone (3e). Column chromatography on silica gel (petroleum ether / ethyl acetate =12:1) afforded the title product in 86% isolated yield as a pale yellow solid. M.p. 160 °C. 1 H NMR (CDCl₃, Me₄Si) d 6.84 (d, J= 3.9 Hz, 1H), 7.33 (d, J= 4.2 Hz, 1H), 7.43 (d, J= 8.7 Hz, 2H), 7.51 (d, J= 8.4 Hz, 2H), 7.74 (d, J= 8.4 Hz, 2H), 7.97 (d, J= 8.4 Hz, 2H); 13 C NMR (CDCl₃, Me₄Si) d 107.83, 122.76, 126.21, 127.55, 128.71, 129.16, 130.58, 135.22, 135.54, 138.84, 151.21, 157.25, 180.52; IR (neat) 1638, 1470, 1312, 1097, 987, 803 cm⁻¹; HRMS (EI) calcd for $C_{17}H_{10}O_{2}Cl_{2}$: 316.0058, found 316.0064.

(5-Ethyl-furan-2-yl)(phenyl)methanone (3f). Column chromatography on silica gel (petroleum ether / ethyl acetate =12:1) afforded the title product in 60% isolated yield as a brown liquid. 1 H NMR (CDCl₃, Me₄Si) d 1.31 (t, J= 7.5 Hz, 3H), 2.79 (q, J= 7.5 Hz, 2H), 6.22 (d, J= 3.6 Hz, 1H), 7.12 (d, J= 3.3 Hz, 1H), 7.44-7.56 (m, 3H), 7.90-7.92 (m, 2H); 13 C NMR (CDCl₃, Me₄Si) d 11.62, 21.66, 107.36, 122.67, 128.18, 128.92, 132.05, 137.57, 150.57, 164.02, 182.12; IR (neat) 3064, 2977, 1779, 1642, 1509, 1321, 881 cm⁻¹; HRMS (EI) calcd for $C_{13}H_{12}O_{2}$: 200.0837, found 200.0831.

(**4,5-Diethyl-furan-2-yl)(phenyl)methanone** (**3h**). Column chromatography on silica gel (petroleum ether / ethyl acetate =10:1) afforded the title product in 41% isolated yield as a yellow liquid. ¹H NMR (CDCl₃, Me₄Si) d 1.17 (t, *J*= 7.7 Hz, 3H), 1.29 (t, *J*= 7.5 Hz, 3H), 2.42 (q, *J*= 7.7 Hz, 2H), 2.73 (q, *J*= 7.5 Hz, 2H), 7.06 (s, 1H), 7.45-7.56 (m, 3H), 7.90-7.93 (m, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 12.71, 14.86, 17.65, 19.89, 123.45, 123.72, 128.24, 129.04, 131.96, 137.90, 149.72, 159.05, 182.06; IR (neat) 3062, 2972, 1768, 1510, 884, 714 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₆O₂: 228.1150, found 228.1154.

(**4-Ethyl-5-phenyl-furan-2-yl)(phenyl)methanone** (**3i**). Column chromatography on silica gel (petroleum ether / ethyl acetate =15:1) afforded the title product in 68% isolated yield as a yellow liquid. ¹H NMR (CDCl₃, Me₄Si) d 1.29 (t, *J*= 7.5 Hz, 3H), 2.75 (q, *J*= 7.5 Hz, 2H), 7.26 (s, 1H), 7.34-7.60 (m, 6H), 7.73-7.76 (m, 2H), 8.00-8.04 (m, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 14.11, 19.04, 123.75, 125.71, 126.51, 128.30, 128.54, 128.67, 129.20, 130.21, 132.21, 137.57, 150.08, 153.02, 182.05; IR (neat) 3062, 2970, 1782, 1481, 1209, 693 cm⁻¹; HRMS (EI) calcd for C₁₉H₁₆O₂: 276.1150, found 276.1157.

(5-(4-Chlorophenyl)-4-ethyl-furan-2-yl)(phenyl)methanone (3j). Column chromatography on silica gel (petroleum ether / ethyl acetate =12:1) afforded the title product in 85% isolated yield as a yellow solid. M.p. 75 °C. ¹H NMR (CDCl₃, Me₄Si) d

1.28 (t, J= 7.4 Hz, 3H), 2.71 (q, J= 7.5 Hz, 2H), 7.22 (s, 1H), 7.38-7.68 (m, 7H), 7.96-7.80 (m, 2H); 13 C NMR (CDCl₃, Me₄Si) d 13.92, 19.02, 123.65, 125.97, 127.57, 128.28, 128.60, 128.86, 129.09, 132.26, 134.34, 137.39, 150.01, 151.71, 181.93; IR (neat) 2967, 1638, 1476, 1323, 892, 732 cm⁻¹; Anal. Calcd for C₁₉H₁₅O₂Cl: C, 73.43, H, 4.86, Cl, 11.41; Found C, 73.30, H, 5.11, Cl, 11.16.

[4-Ethyl-5-(4-methoxy-phenyl)-furan-2-yl]-phenyl-methanone (3k). Column chromatography on silica gel (petroleum ether / ethyl acetate =9:1) afforded the title product in 81% isolated yield as a yellow liquid. 1 H NMR (CDCl₃, Me₄Si) d 1.27 (t, J= 7.4 Hz, 3H), 2.70 (q, J= 7.4 Hz, 2H), 3.82 (s, 3H), 6.95 (d, J= 9.0 Hz, 2H), 7.23 (s, 1H), 7.46-7.59 (m, 3H), 7.68 (d, J= 8.7 Hz, 2H), 7.97-8.00 (m, 2H); 13 C NMR (CDCl₃, Me₄Si) d 14.04, 18.97, 55.17, 114.06, 122.87, 124.11, 124.33, 127.96, 128.22, 129.06, 132.02, 137.70, 149.50, 153.35, 159.76, 181.79; IR (neat) 3061, 2967, 1637, 1484, 1254, 834 cm⁻¹; HRMS (EI) calcd for C₂₀H₁₈O₃: 306.1256, found 306.1270.

(3,5-Diphenyl-furan-2-yl)-phenyl-methanone (3l). Column chromatography on silica gel (petroleum ether / ethyl acetate =20:1) afforded the title product in 50% isolated yield as a yellow solid. ¹H NMR (CDCl₃, Me₄Si) d 6.96 (s, 1H), 7.31-7.54 (m, 9H), 7.58-7.63 (m, 2H), 7.75-7.78 (m, 2H), 7.93-7.98 (m, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 109.76, 124.91, 128.00, 128.09, 128.34, 128.91, 129.14, 129.20, 129.66, 129.83, 132.12, 134.83, 137.60, 137.95, 145.82, 155.91, 183.36. The spectroscopic data is in agreement with that previously reported. ^[6]

(3-Butyl-5-phenyl-furan-2-yl)-phenyl-methanone (3m). Column chromatography on silica gel (petroleum ether / ethyl acetate =18:1) afforded the title product in 70% isolated yield as a yellow liquid. ¹H NMR (CDCl₃, Me₄Si) d 0.96 (t, *J*= 7.4 Hz, 3H), 1.41-1.48 (m, 2H), 1.63-1.71 (m, 2H), 2.96 (t, *J*= 7.7 Hz, 2H), 6.77 (s, 1H), 7.32-7.42 (m, 3H), 7.47-7.56 (m, 3H), 7.69-7.72 (m, 2H), 8.06-8.09 (m, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 13.90, 22.51, 26.08, 31.59, 109.73, 124.76, 128.09, 128.81, 128.92, 129.41, 129.48, 131.89, 138.24, 140.50, 147.18, 155.54, 183.21; IR (neat) 3064, 2957, 1637, 1476, 1291, 907, 691 cm⁻¹; HRMS (EI) calcd for C₂₁H₂₀O₂: 304.1463, found 304.1459.

Phenyl-(5-phenyl-3-trimethylsilyl-furan-2-yl)-methanone (3n). Column chromatography on silica gel (petroleum ether / ethyl acetate =30:1) afforded title product in 70% isolated yield as a yellow solid. M.p. 79-81 °C. ¹H NMR (CDCl₃, Me₄Si) d 0.40 (s, 9H), 6.88 (s, 1H), 7.31-7.42 (m, 3H), 7.51-7.56 (m, 3H), 7.71-7.74 (m, 2H), 8.14-8.17 (m, 2H); ¹³C NMR (CDCl₃, Me₄Si) d -1.40, 0.86, 113.38, 124.82, 128.19, 128.80, 128.86, 129.47, 129.80, 132.19, 134.15, 137.51, 155.67, 156.46, 182.47; IR (neat) 3067, 2959, 1635, 1468, 1267, 1060, 842 cm⁻¹; HRMS (EI) calcd for C₂₀H₂₀O₂Si: 320.1233, found 320.1234.

3,5-Diphenyl-furan-2-carbaldehyde (**30**). Column chromatography on silica gel (petroleum ether / ethyl acetate =8:1) afforded the title product in 78% isolated yield as a yellow solid. M.p. 100-101 °C. ¹H NMR (CDCl₃, Me₄Si) d 6.93 (s, 1H), 7.38-7.59 (m, 8H), 7.82-7.86 (m, 2H), 9.70 (s, 1H); ¹³C NMR (CDCl₃, Me₄Si) d 108.44, 125.30,

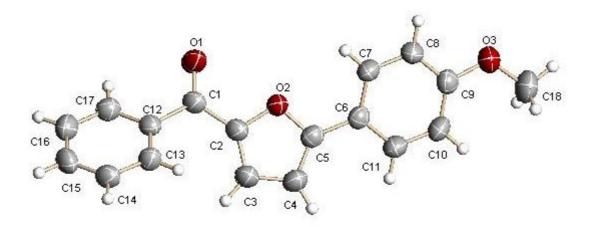
128.55, 128.81, 128.84, 129.13, 129.74, 130.44, 140.90, 146.55, 158.25, 177.09; IR (neat) 2836, 1667, 1450, 1252, 928, 763 cm $^{-1}$; Anal. calcd for $C_{17}H_{12}O_2$: C, 82.24; H, 4.87; Found C, 82.39, H, 5.07.

3-Butyl-5-phenyl-furan-2-carbaldehyde (**3p**). Column chromatography on silica gel (petroleum ether / ethyl acetate =20:1) afforded the title product in 76% isolated yield as a red liquid. ¹H NMR (CDCl₃, Me₄Si) d 0.95 (t, *J*= 7.2 Hz, 3H), 1.34-1.47 (m, 2H), 1.60-1.70 (m, 2H), 2.81 (t, *J*= 7.7 Hz, 2H), 6.72 (s, 1H), 7.34-7.45 (m, 3H), 7.76-7.81 (m, 2H), 9.75 (s, 1H); ¹³C NMR (CDCl₃, Me₄Si) d 13.71, 22.18, 24.43, 32.00, 109.19, 125.10, 128.76, 128.91, 129.42, 141.19 (br), 147.57, 158.13, 176.88 (br); IR (neat) 2957, 1672, 1452, 1259, 931, 765 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₆O₂: 228.1150, found 228.1145.

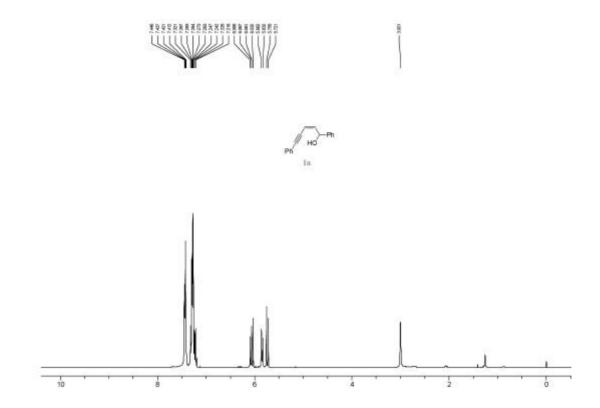
5-(4-Chloro-phenyl)-3-phenyl-furan-2-carbaldehyde (**3q**). Column chromatography on silica gel (petroleum ether / ethyl acetate =10:1) afforded the title product in 40% isolated yield as a yellow solid. M.p. 103-105 $^{\circ}$ C. 1 H NMR (CDCl₃, Me₄Si) d 6.93 (s, 1H), 7.40-7.60 (m, 7H), 7.78 (d, J= 8.7 Hz, 2H), 9.71 (s, 1H); 13 C NMR (CDCl₃, Me₄Si) d 108.79, 126.58, 127.13, 128.88, 128.94, 129.19, 129.31, 130.30, 135.76, 140.92, 146.73, 157.11, 177.17; IR (neat) 2835, 1659, 1477, 1091, 927, 827 cm⁻¹; HRMS (EI) calcd for C₁₇H₁₁O₂Cl: 282.0448, found 282.0455.

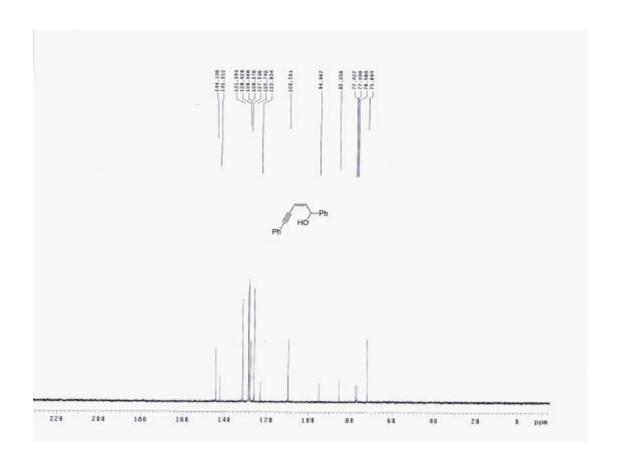
1,1,5-Triphenylpent-1-en-4-yn-3-one (7). Column chromatography on silica gel

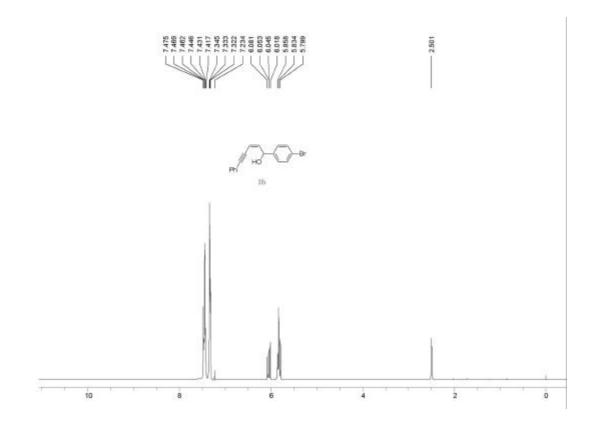
(petroleum ether / ethyl acetate =8:1) afforded the title product in 23% isolated yield as a pale yellow solid. M.p. 134-137 °C. 1 H NMR (CDCl₃, Me₄Si) d 6.75 (s, 1H), 7.14 (d, J= 7.5 Hz, 2H), 7.24 (t, J= 7.5 Hz, 2H), 7.32-7.42 (m, 11H); 13 C NMR (CDCl₃, Me₄Si) d 88.73, 92.29, 120.19, 127.70, 128.10, 128.19, 128.48, 128.82, 129.34, 130.06, 130.12, 130.77, 133.04, 138.21, 140.69, 157.79, 177.69; IR (neat) 2200, 1602, 1488, 1301, 1185, 759 cm⁻¹; HRMS (EI) calcd for C₂₃H₁₆O: 308.1201, found 308.1188.

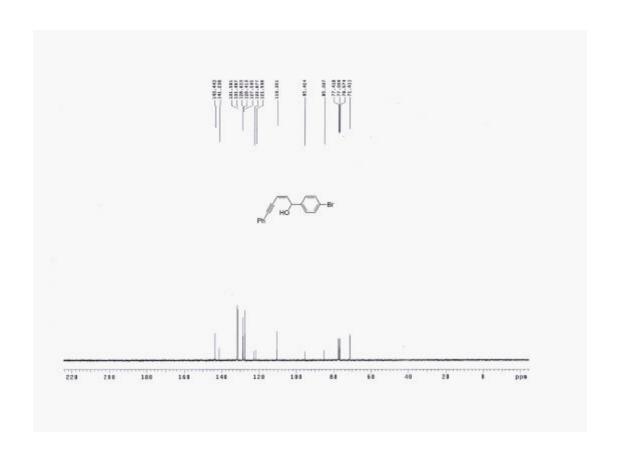

(*Z*)-2,3-Diethyl-5-(4-methoxyphenyl)-1-phenylpent-2-en-4-yn-1-one (2r). The title compound was prepared by the reaction with 2 equiv. IBX in DMSO at room temperature for 1 h. Column chromatography on silica gel (petroleum ether / ethyl acetate =30:1) afforded the title product in 87% isolated yield as a pale yellow solid. M.p. 60-62 °C. ¹H NMR (CDCl₃, Me₄Si) d 1.09 (t, *J*= 7.7 Hz, 3H), 1.25 (t, *J*= 7.5 Hz, 3H), 2.41 (q, *J*= 7.6 Hz, 2H), 2.54 (q, *J*= 7.5 Hz, 2H), 3.71 (s, 3H), 6.64 (d, *J*= 9.0 Hz, 2H), 6.76 (d, *J*= 8.7 Hz, 2H), 7.43-7.56 (m, 3H), 7.98 (d, *J*= 6.9 Hz, 2H); ¹³C NMR (CDCl₃, Me₄Si) d 13.18, 23.68, 25.42, 55.09, 87.64, 96.49, 113.50, 114.98, 125.64, 128.34, 129.56, 132.53, 132.73, 137.55, 145.76, 159.32, 199.83; HRMS (EI) calcd for C₂₂H₂₂O₂: 318.1620, found 318.1634.

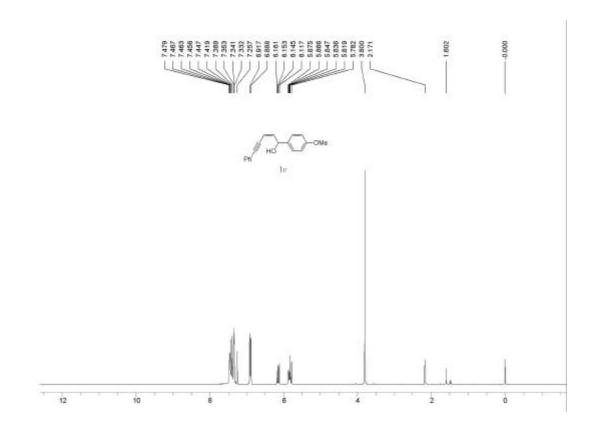
(3,4-Diethyl-5-phenylfuran-2-yl)(4-methoxyphenyl)methanone (3r). Column chromatography on silica gel (petroleum ether / ethyl acetate =20:1) afforded the products as a mixture of 2r and 3r in a ratio of 1.8:1 in 72% combined yield as a pale


yellow solid. ¹H NMR (CDCl₃, Me₄Si) for **3r**: d 1.28 (m, 6H), 2.71 (q, J= 7.6 Hz, 2H), 2.54 (q, J= 7.5 Hz, 2H), 3.86 (s, 3H), 6.98 (d, J= 8.7 Hz, 2H), 7.31-7.36 (m, 1H), 7.44 (d, J= 7.5 Hz, 2H), 7.68-7.71 (m, 2H), 8.13-8.17 (m, 2H); ¹³C NMR (CDCl₃, Me₄Si) for **3r**: d 14.47, 14.73, 16.83, 17.84, 55.29, 113.34, 125.69, 126.17, 128.18, 128.74, 130.69, 130.97, 131.87, 140.54, 146.74, 150.68, 162.61, 181.64; HRMS (EI) calcd for $C_{22}H_{22}O_3$: 334.1569, found 334.1577.


Reference:


- [1] a) R. Takeuchi, K. Tanabe, S. Tanaka, J. Org. Chem. 2000, 65, 1558; b) Y. Zhang,
 J. W. Herndon, Org. Lett. 2003, 5, 2043; c) J. A. Marshall, B. A. Dehoff, J. Org.
 Chem. 1986, 51, 863; d) K. D. Kim, P. A. Magriotis, Tetrahedron Lett. 1990, 43,
 6137; e) D. L. Romero, E. L. Fritzen, Tetrahedron Lett. 1997, 38, 8659; f) S. Wang,
 Y. Tu, P. Chen, X. Hu, F. Zhang, A. Wang, J. Org. Chem. 2006, 71, 4343.
- [2] S. Guo, H. Zhang, F. Song and Y. Liu, *Tetrahedron* **2007**, *63*, 2009.
- [3] a) M. Frigerio, M. Santagostino, S. Sputore, J. Org. Chem. 1999, 64, 4537; b) D. B.
 Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155.
- [4] S. Wang, Y. Tu, P. Chen, X. Hu, F. Zhang, A. Wang, J. Org. Chem. 2006, 71, 4343.
- [5] J. Guillard, C. Lamazzi, O. Meth-Cohn, C. W. Rees, A. J. P. White, D. J. Williams, J. Chem. Soc., Perkin Trans. 1, 2001, 1304.
- [6] I. Francesconi, A. Patel, D. W. Boykin, Synthesis 1999, 61.




X-ray single-crystal structure of **3c**.

